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provided one considers portfolios that solely consist of stocks or bonds.
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1. Introduction

The 1997 Asian crisis, the LTCM debacle or the recent subprime
credit crunch have increased the awareness of both academics and
practitioners on the importance of accurately assessing the likeli-
hoods of so-called extreme events. Stated otherwise, fluctuations
in financial markets whose occurrence is relatively rare can drive
banks or institutional investors into overnight financial distress
when they strike. However, the academic interest into large tail
events is far from new (for an early reference see e.g. Mandelbrot,
1963). He was one of the first to acknowledge that overnight finan-
cial market turbulence cannot be captured by the normal distribu-
tion function (df). More specifically, tail probabilities show a
polynomial tail decay (“heavy” tails) in contrast to the exponential
tail decays of so-called “thin tailed” models like the normal df and
most financial asset classes exhibit this “heavy tail” characteristic.
Numerous empirical studies focus on identifying the degree of prob-
ability mass in the tail by estimating the so-called tail index o.! The

* Corresponding author. Tel.: +31 43 388 36 79; fax: +31 43 388 48 75.

E-mail addresses: s.straetmans@maastrichtuniversity.nl (S. Straetmans),
b.candelon@maastrichtuniversity.nl (B. Candelon).

! Jansen and de Vries (1991), Longin (1996) and Hartmann et al. (2004) investigate
the probability mass in the tails of stock market returns; whereas Koedijk et al. (1990,
1992), Hols and de Vries (1991) and Hartmann et al. (2003) consider fat tails in
foreign exchange rate returns. Bond extremes remain relatively unexplored except for
de Haan et al. (1994) and Hartmann et al. (2004).
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integer part of this parameter reflects the number of bounded statis-
tical moments of the corresponding unconditional df.

The causes and consequences of changes in the tail index (pro-
vided changes occur) remain relatively unexplored. Conditional
volatility models like the GARCH-type class reconcile a stationary
unconditional df (constant tail index) with clusters of high and
low volatility in the conditional df. However, the question arises
whether it is realistic to assume that the tail of the unconditional
df (and thus measures of long-term risk like unconditional quan-
tiles) remains invariant over long time periods. In other words:
can highly volatile periods like the 2007-2010 financial turmoil
and periods of market quiescence both be explained by a single
unconditional df? Potential causes of tail index changes include
structural shifts like e.g. changing trading systems, financial regu-
latory reform and financial liberalization or changes in the political
environment. Moreover, economists seem to agree that these
structural changes are more frequently happening in emerging
economies. Our empirical application therefore distinguishes be-
tween developed and emerging return tails in order to evaluate
whether emerging return tails are relatively more prone to struc-
tural shifts in the tail index.

Testing for structural change in the tail behavior of the
unconditional distribution is relevant from both a statistical and
economic perspective. First, whether extreme value theory (EVT)
or e.g. the cited GARCH models are applicable depends on the
stationarity assumption for the unconditional tail. Also, a
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non-constant tail index implies a violation of covariance stationa-
rity which complicates standard statistical inference based on
regression analysis. From an economic perspective, quantifying
the correct level of the tail index is relevant for risk managers as
it constitutes a necessary ingredient for calculating the uncondi-
tional Value-at-Risk (VaR) very far into the distributional tail, i.e.
so-called “tail risk”. Indeed, whereas regulatory instances require
the financial industry to report and backtest 5% and 1% VaR, these
events hardly represent extreme events that can trigger financial
companies into overnight financial distress. Instead, evaluating
downside risk much further into the tail represents useful addi-
tional information to e.g. traditional stress testing approaches.
Other EVT applications in portfolio selection and risk management
include safety first portfolio selection for pension funds (Jansen
et al., 2000) or the assessment of trading limits for unhedged forex
positions in commercial banks (see Danielsson and de Vries, 1997).
If one incorrectly assesses the actual tail index value in these exer-
cises due to e.g. the presence of structural breaks, unconditional
VaR quantiles are most probably biased which erodes the effective-
ness of financial risk management and the proper monitoring of
overall financial stability (e.g. wrong allocation of risky invest-
ments in pension fund portfolios, wrong trading limits for forex
traders within banks, etc.).

The scant empirical literature on the constancy issue mainly fo-
cuses on testing for a single known (i.e. exogenously selected)
breakpoint in the tail index.? To the best of our knowledge, Quintos
et al. (2001) constitutes the only stability study on detecting (single)
breakpoints as well as corresponding break dates in the tail index.
Our study extends and refines the previous breakpoint analyses in
several directions. First, we select the number of extreme returns to
estimate the tail index by minimizing its Asymptotic Mean Squared
Error (AMSE) instead of conditioning on a fixed fraction of the total
sample. The former approach constitutes common practice in EVT
whereas taking a fixed percentage of extremes leads to a degenerate
asymptotic limiting df for the tail index estimator and accompanying
stability tests. Second, our simulation study of the stability tests’ fi-
nite sample properties is much more general than previous studies
because we also use data generating processes (DGP’s) that consider
higher order tail behavior or empirical stylized facts like e.g. volatility
clustering in returns. Last but not least, we apply stability tests to a
large cross section of assets and asset classes whereas previous stud-
ies typically only focus on a limited number of assets within the same
asset class. We also distinguish between developed market financial
assets and emerging market financial assets in order to judge
whether the latter are more prone to shifts in the tail behavior.

Anticipating our results, we find that size, (size-corrected)
power and the ability to detect breaks in finite samples vary con-
siderably with the assumed DGP. That is the reason why we pro-
pose to bootstrap the critical values in empirical applications for
each data set separately. Moreover, the outcomes of our experi-
ments on size-corrected power and the ability to detect breaks
suggest that a “recursive” version of the stability test is to be
preferred provided the sample is sufficiently large (at least 2000

2 The breakpoint literature includes Koedijk et al. (1990, 1992), Jansen and de Vries
(1991), Pagan and Schwert (1990) and Straetmans et al. (2008). One can distinguish
tests for structural change in the tail index from cross sectional equality tests (see e.g.
Koedijk et al., 1990, on exchange rates or Jondeau and Rockinger, 2003, on stock
markets) or asymmetry tests between left and right tails of the same series (see e.g.

3 Werner and Upper (2002), Galbraith and Zernov (2004) and Candelon and
Straetmans (2006) already apply the Quintos et al. (2001) methodology to test for tail
stability in bund Future returns, US stock market returns and Asian currency returns,
respectively. However, they all use the Quintos et al. (2001) asymptotic critical values.
We argue in this paper that these critical values do not take into account the bias in
the Hill estimator for the tail index and lead to overrejection of the null hypothesis of
tail index constancy.

observations). Upon applying a bootstrap-based version of this test
to a large cross section of assets and asset classes, we mainly detect
breaks in the tail behavior of emerging currencies.

The rest of the paper is organized as follows. Section 2 provides
a refresher on the statistical theory of heavy tails and accompany-
ing endogenous stability tests. Section 3 contains an elaborate
Monte Carlo investigation of the endogenous breakpoint tests’ size,
power and break date ability. Section 4 provides an extensive
empirical investigation on the tail stability of a variety of devel-
oped and emerging asset tails. Section 5 contains concluding
remarks.

2. Testing structural change in tail behavior: theory

We provide a short digression on the theory and estimation of
the tail index o followed by a discussion of some temporal stability
tests for this parameter. We start from the empirical stylized fact
that sharp fluctuations in financial market prices exhibit fat tails,
see e.g. Mandelbrot (1963) for an early reference or the more re-
cent monograph by Embrechts et al. (1997). Without loss of gener-
ality, we express estimation and testing procedures in terms of the
right tail, i.e. the survivor function P{X > x} := 1 — F(x). Our empir-
ical investigation focuses on sharp drops in the prices of risky secu-
rities. This requires taking the negative of a return series prior to
applying the sketched framework. Under fairly general conditions,
we can approximate the survivor function of heavy tailed (or “reg-
ularly varying”) distributions by the second order Taylor expansion
for large x:

1-Fx)=ax*(1+bx " +o(x")), (1)

witha >0, « >0, be R, p>0, see e.g. de Haan and Stadtmiiller
(1996). The parameters f and b that govern the second order behav-
ior in (1) reflect the deviation from pure Pareto behavior in the tail.
Notice that if we talk about the “second order parameter” of a fat
tailed or regularly varying process later on in the paper, we always
refer to the ratio p = —p/o. The case f=p =0 corresponds to the
expansion P{X > x} ~ ax %[1 + bInx]. The tail specializes to an exact
Pareto when b = 0.

The regular variation property implies that the (appropriately
scaled) upper extremal returns lie in the maximum domain of
attraction of the Type-II extreme value (“Frechet”) distribution.
The tail index o reflects the speed at which the tail probability in
(1) decays if x is increased. A lower tail index implies a slower
probability decay and higher probability mass in the tail of X, cete-
ris paribus the level of x. The regular variation property, inter alia,
implies that distributional moments E(X") with r>o, are un-
bounded, signifying “fat tails”. Regularly varying probability distri-
butions include the Student-t, symmetric stable, Burr, and Frechet
df as well as the GARCH class of conditional volatility models.* As
for the tail of the standard normal distribution, a popular tail approx-
imation expresses the survivor function 1 — @(-) in terms of the den-
sity ¢(x):

1-d(x) ~ @, x large = (2mx) "' exp (—%)8),

which clearly describes an exponentially declining tail, see Feller
(19714, p. 175). We classify distributions with this type of tail decay
as “thin tailed” because the tail probability 1 — @(x) declines much

4 Hall (1982) imposes the more stringent condition o = § on the tail expansion. This
covers certain distributions like the stable laws and the type Il extreme value
distribution (Frechet); but it does not apply to e.g. the Student-t or the Burr df. For the
Student-t df the tail expansion (1) holds, though, with o equal to the degrees of
freedom parameter and f = 2. As for the Burr df, the 2nd order parameter can be freely
chosen. The value of  is unknown for the GARCH class.
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faster to zero as in (1); but these distributions possess all moments,

and hence do not capture what is typically observed in financial data.
The paper’s focus is on the finite sample properties of (single

break) temporal stability tests for tail index estimators. The

scrutinized test statistics use Hill's (1975) estimator as an input.

Let Xy, < Xon < --- < X represent the ascending order statistics

that correspond with the returns series X for a sample of size n.
Hill’s estimator boils down to:

= (Sn () @

such that & > 0, with m the number of highest order statistics used in
estimation. The convergence in distribution of the Hill statistic criti-
cally depends on the rate at which the nuisance parameter m grows
with the total sample size n. The following theorem summarizes the
main convergence in distribution result for the Hill estimator:

Theorem 1. (Asymptotic normality) Assume that 1 — F(x) obeys (1).
If m,n — oo we distinguish two cases:

(A) If m = o(n2¥@B*DY then \/m(6 — o) % N(O, no2).
(B) If m = cn®#IP*®) then /m (6. — oc) % N(qa, no) for strictly posi-

tive and finite ¢ = (%) T and @ = sign(b)(2p/o) "2,

see e.g. Hall (1982) and Haeusler and Teugels (1985) for the i.i.d.
case (1 = 1). Quintos et al. (2001) generalize this result to stationary
GARCH processes with conditionally normal innovations.

Loosely speaking, Theorem 1 implies that proper convergence in
distribution requires m to rise with n at a “sufficiently slow” speed,
i.e. m,n — oo but m/n —» 0. This, however, does not hold when
selecting a fixed fraction of extremes x = m/n. Previous studies ar-
gue that this simple rule-of-thumb performs well in finite samples
but its lack of asymptotic justification constitutes a fundamental
problem (see e.g. Dumouchel, 1983). We will therefore abstain
from using this criterion.

Condition (B) in Theorem 1 provides a natural alternative to-
wards selecting the nuisance parameter because one can easily
show that the expression for the nuisance parameter m under (B)
minimizes the Asymptotic Mean Squared Error (AMSE) for the Hill
estimator (see e.g. Danielsson and de Vries, 1997). Virtually all
empirical EVT studies exploit the AMSE minimization principle
and we therefore use this criterion in the rest of the paper.’ Theo-
rem 1 also shows that the AMSE criterion induces an asymptotic bias
in the Hill statistic, i.e. E(& — o) ~ m~'/2¢pa. We will thoroughly doc-
ument the finite sample consequences of this bias effect on the
accompanying stability tests in the Monte Carlo simulation section
(Section 3). For more elaborate expositions on extreme value theory
and estimation, see e.g. the monographs by Leadbetter et al. (1983)
or Embrechts et al. (1997).

The main goals of the paper are to investigate the finite sample
properties of a trio of (single break) stability tests for the Hill sta-
tistic introduced earlier by Quintos et al. (2001) and to apply it to
detect single breaks in a large set of assets and asset classes from
developed and emerging markets. The stability tests differ in the
way subsamples are constructed for the Hill estimates. We define
the recursive estimator on subsamples [1; t] c [1; n] as follows:

5 In principle, one can also use condition gA) as a selection criterion. For example,
choose a strictly positive ¢ in m* = cnr o, However, although this criterion
guarantees asymptotic unbiasedness, finite sample bias still exists. Moreover, the
small sample standard deviation increases with o. If one cares more about bias than
variance, (A) may be an interesting criterion for selecting m. In practice, however,
researchers typically penalize bias and variance equally and prefer to trade-off bias
and variance such as under condition (B). Finally, it is unclear how to choose 4.

-1
1 me—1 X,
b = In 7,) . 3
‘ <mt JZO (Xt—mt.t ) ’ 3

with m; = ctW. We condition the rolling estimator on a fixed sub-
sample size w < n. Rolling over the subsample requires shifting the
subsample through the full sample by eliminating past observations
and adding future observations whilst keeping the subsample size
constant at w:

1 my—1 weiw -1

at <mw =0 In (Xw My, w)) ’ (4)
with m,, = cwr, Finally, in order to calculate the sequential test
statistic, we partition the total sample in recursive subsamples
[1;¢t] and [t+1;n] and shift t (reflecting the potential break)
through the full sample. We calculate subsample Hill statistics
(recursive estimators) for both subsamples using (3). The recursive
Hill estimators for the first and the second recursive subsamples
correspond with &, and &, respectively. One also often refers to
the latter estimator as the “reverse” recursive estimator because
it requires (3) to be calculated in reverse calendar time.®

We construct the three (recursive, rolling and sequential) tests
using the sequences:

o= ()31’
o= (51

2= (M) (2 1) )

with r = t/n representing a fraction of the full sample. Expressions
(5) and (6) reflect the fluctuations in the Hill statistic’s recursive
and rolling values relative to the full sample Hill statistic whereas
the sequential test uses (7) to compare the fluctuations of the recur-
sive estimator with the reverse recursive estimator.

The null hypothesis of a time invariant tail index o boils down
to:

Hy : Onr) = &,

VreR, =[g1—¢ c0:1], (8)

with [nr] representing the integer value of nr. One would like to test
this null hypothesis against the two-sided alternative hypothesis
Ha: oqnr # o For sake of convenience we calculate the above test
over compact subsets of [0; 1], i.e. t equals the integer part of nr
forre R, =[e;1 —¢] and for small ¢ > 0.

Sets like R, are common in the construction of parameter con-
stancy tests (see e.g. Andrews, 1993). Conform with Quandt’s
(1960) seminal work on endogenous breakpoint determination in
linear time series models, we select the candidate break date r
where the sequences (5)-(7) reach their supremum. This renders
the most likely time point for the constancy hypothesis to be
violated.

3. Monte Carlo experiments

We investigate the finite sample behavior of the recursive, roll-
ing and sequential test for a variety of stochastic models - both for
the conditional and the unconditional df - used in the modelling of

6 We calculate the recursive Hill statistic &, using Eq. (3) on the subsample
[n;t+ 1] which implies an inversion of the observations’ chronology, i.e. we put the
most recent observations at the beginning of the subsample.

7 The restricted choice of r implies that én < t < (1 — &)n. Conform with Andrews
(1993), we set ¢ =0.15.
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financial time series. Each model exhibits regularly varying tails
and obeys the asymptotic second order expansion (1). The number
of upper order extremes for the Hill statistic minimizes the Asymp-
totic Mean Squared Error of the Hill estimator. We calculate finite
sample critical values and size-corrected finite sample power
against a variety of realistic break scenarios as alternative hypoth-
eses. Last but not least, we report simulated break estimates aver-
aged over the statistically significant breaks at the 95% significance
level. Section 3.1 provides a short description of the main data gen-
erating processes (DGP’s). Section 3.2 contains the analytic deriva-
tion of the nuisance parameters for these DGP’s. Section 3.3 reports
finite sample critical values, size-corrected power properties and
the ability to date breaks.

3.1. Data generating processes

We choose a variety of heavy tailed DGP’s and accompanying
parameter values (a,b, o, 8) that all obey the asymptotic expansion
(1). We base our Monte Carlo simulations on the symmetric stable
df, Student-t, Burr, i.e. P(X>x}=(1+x")"? with p=—p/o, AR(1)
with stable innovations, GARCH(1, 1) with conditionally normal er-
rors and a Stochastic Volatility model.® Thus, we distinguish be-
tween ii.d. draws and dependent draws. The tail index of the
Student-t and Burr distribution functions varies between 2 and 4
which is in line with all previous empirical research on heavy tails
in financial markets.®

Previous studies, including the Quintos et al. (2001) paper, only
study the finite sample behavior of stability tests for the tail index
under the class of stable distribution functions (dfs). However, the
symmetric stable model has some severe drawbacks as a device for
modelling financial returns. First, the property that sums of stable
dfs remain stable distributed after appropriate scaling (additivity
property) seems overly restrictive for real-life data. Indeed, Feller
(1971b, p. 278) shows that the class of regularly varying or “heavy
tailed” dfs exhibits additivity in the tail area but not over the full
distributional support. Also, the stable class fails to have a finite
variance when their tail index is lower than 2. Finally, the normal
df is a “local alternative” for the stable model which implies that
stable processes with a tail index only slightly smaller than 2 can
hardly be distinguished from a normal df on the basis of Hill esti-
mates in very large samples. The other models we use for simula-
tion do not suffer from these drawbacks.

In order to further mimic the time series properties of real-life
financial return data, we also use models that exhibit dependence
in returns and volatility. We use an AR(1) process with nonzero
first order serial correlation 6 and with symmetric stable innova-
tions to generate serially dependent data due to market micro-
structure effects in high frequency data, see e.g. Andersen and
Bollerslev (1997). In order to generate persistence in volatility,
we employ two distinct models. First, we implement the following
model to generate returns X proposed by Danielsson et al. (2001):

v
X, = U, /WH“ P{U; = -1} =P{U, =1} =05

H; = pQ; + 0H;_1,

with g =0.1, 0 = 0.9 and where Q is drawn from a standard normal df.
As usual, %%(v)stands for the chi-square distribution with vdegrees of
freedom. The unconditional df of X is Student-t distributed with o = v
degrees of freedom. The multiplicative factor U guarantees the fair

8 We use the algorithm by Samorodnitsky and Taqqu (1994) to generate symmetric
stable draws.

9 The Burr distribution is admittedly also not a realistic model for financial return
modelling but it enables one to investigate the effects of changing the second order
parameter p while keeping the tail index constant.

game property E; 1X; =0 but preserves the volatility clustering fea-
ture. Second, we also simulate from a GARCH(1, 1) model with condi-
tionally normal innovations. We choose the sum of the GARCH
volatility parameters 6 = o + 7 such that the tail index of the corre-
sponding unconditional df equals 4. The GARCH model class enables
one to change the volatility persistence 0 ceteris paribus the tail index.'®

3.2. Choice of optimal number of extremes

Tail index estimators like the Hill statistic imply a bias/variance
trade-off, i.e. the more data one uses from the distributional centre
the smaller is the variance of the estimator at the cost of an in-
crease in bias. Goldie and Smith (1987) therefore propose to select
the number of upper order extremes m used in estimating (2) by
minimizing the Asymptotic Mean Squared Error (AMSE) of the Hill
statistic. Using the second order expansion (1) for regularly varying
tails, Danielsson and de Vries (1997) derive an expression of the
AMSE for the Hill estimator:

1 g <m 2 1

) — —2p/a _
AMSE(%) = a2 I + 9)

n ozm’

where the first part is the squared bias and the second part is the
asymptotic variance. The above expression shows that the second
order parameters b and f are responsible for the bias in the Hill sta-
tistic, i.e. if at least one of these parameters equals zero, the bias
term disappears and the distributional tail (1) specializes to an ex-
act Pareto. Minimizing (9) w.r.t. m renders the optimal number of
highest order statistics:

2 @
m = cn2h/@h) ¢ = oo+ p) a2 ‘ (10)
28°b° ’

which is the same expression as under condition (B) of Theorem 1.

We obtain the parameter set (a,b,x, 8) — and thus the value of
m* - for distinct distributional models by developing the tail
expansion (1).1! However, for stochastic processes with unknown
tail expansion parameters and for the real-life data in the empirical
section, the closed-form expression (9) for AMSE does not exist. In-
stead, we implement the Beirlant et al. (1999) algorithm that min-
imizes a sample equivalent of the AMSE.'? In order to save
computation time, we do not determine the optimal nuisance
parameter m* for each recursive, rolling or sequential subsample
in (5)-(7) separately. Instead, we determine the full sample esti-
mate for m* which automatically identifies the full sample scaling
constant ¢ in (10) by & = rm/n?3.'3 Extrapolating the optimal path

10 Mikosch and Starica (2000) show that the unconditional distribution of a
GARCH(1,1) process with conditionally normal standardized residuals exhibits a
heavy tail. They also derive a closed-form relation between the tail index and the
parameters of the conditional variance equation. For « = 4 (a representative value for
the tail index of financial assets in the empirical literature), the closed-form relation
specializes to a quadratic equation in the GARCH parameters (fo, f1) governing the
conditional variance equation. Exact parameter values can be calculated by restricting
the parameter sum 60 = o + 1 to values below 1. All technical details on this closed-
form expression are provided in Appendix C (“Calibration of GARCH(1,1) parame-
ters”) of the corresponding working paper, see Straetmans and Candelon (2012).

1 This is the case for the stable, student-t, Burr and stochastic volatility models. We
include details on the accompanying tail expansion derivations in Appendix B
(“Derivation of 2nd order expansion parameters”) of the corresponding working
paper, see Straetmans and Candelon (2012).

12 Subsample bootstrap algorithms to select m by means of AMSE minimization
constitute an alternative route (see e.g. Danielsson et al., 2001); but these subsample
strategies typically require much larger samples than the ones we use and are
therefore unsuited for the present analysis.

13 The exponent 2/3 follows from imposing the restriction o= on the tail
expansion parameters. This circumvents the need for estimating f separately.
Moreover, simulations convincingly show that the Beirlant criterion still performs
well under this restriction even when the true values of g and « differ, see e.g. Beirlant
et al. (1999).



1836 S. Straetmans, B. Candelon /Journal of Banking & Finance 37 (2013) 1832-1844

for m to the subsamples defined by the stability tests (and using
the notation from Section 2), we obtain 1, = ¢t*/ for the recursive
and sequential tests and i, = ¢cw??® for the rolling test, respec-
tively. For sake of simplicity we assume that ¢ does not change
across subsamples and that it can be set equal to its full sample
value.

3.3. Monte Carlo results

We first investigate the impact of breaks in the tail index on the
finite sample performance of tail index and extreme downside risk
measures, i.e. should we care about the detection and presence of
breaks when applying EVT techniques that assume stationary tail
behavior? Next, we evaluate the finite sample critical values and
power of the considered stability tests for the tail index. We also
investigate the ability of the tests to locate break dates. To this
aim, we simulate from the set of models introduced in the previous
section.

Prior to investigating the finite sample performance of the sta-
bility tests for the tail index, we consider the finite sample perfor-
mance of the Hill statistic and a popular quantile estimator that
uses the Hill statistic as input. More specifically, we employ the
semi-parametric quantile estimator introduced by de Haan et al.
(1994):

) m\>
dp = Xn-mn (17n> ) (11)

and where the “tail cut-off point” X;,_,, is the (n — m)th ascending
order statistic (or loosely speaking the mth smallest return) from a
sample of size n such that q > X, _n,. The quantile g, is interpret-
able as the daily Value-at-Risk (VaR) at the p% significance level.
Financial extremes by definition do not strike often but if they oc-
cur they can drive financial institutions into overnight distress and
jeopardize overall financial stability. Thus, looking at VaR numbers
further into the tail than usual (i.e. corresponding with very low
levels of p) is potentially relevant for both risk managers and reg-
ulators. As an illustration, consider the problem of allocating upper
limits on open positions to foreign currency dealers by the treasur-
ers of the forex dealing room of an international bank.'® The trad-
ing limits depend on the probability p on a single large negative
currency return that can bring the bank’s solvency in jeopardy. In
this example, the level p is interpretable as the insolvency risk
the management considers “acceptable”. Suppose the management
chooses a critical loss level s < 0 which stands for the maximum loss
that can be incurred without running into solvency problems. A
simple way to determine the maximum allowable investment I is
to set I =s/q, with g, the extreme quantile estimator as defined
in (11).

Turning to the finite sample performance of the above tail in-
dex and quantile estimators, we know from Theorem 1 that both
estimators (& and ¢,) are asymptotically biased under condition
(B). A Monte Carlo investigation can clarify to what extent the
asymptotic bias transfers into finite sample bias and estimation
risk for the Hill statistic and the quantile estimator. Table 1 con-
tains averages, standard errors and Root Mean Squared Errors
(RMSESs) for & and g,. We perform the Monte Carlo experiment
for sample sizes of 8000 observations and for 10,000 replications.
The VaR’s significance level p equals the inverse of the sample
size.

Table 1 distinguishes between models that either generate
dependent or independent draws (lower and upper panel, respec-
tively). In the upper panel, we let the tail index « and the second

14 See Danielsson and de Vries (1997) for a more elaborate discussion and for other
applications of extreme quantile estimation for e.g. institutional investors.

order parameter f3 (or p) vary; in the lower panel, we manipulate
the degree of serial correlation or volatility clustering (parameter
0) ceteris paribus oo and B. The outcomes show a large heterogene-
ity in finite sample bias and estimation accuracy across different
distributions. This reflects the differences in the second order
behavior of the considered tail models. Notice that in case of
pure Pareto-type tail behavior (no second order behavior), the
Hill statistics and the corresponding quantile estimates are
unbiased.

Biases in the Hill statistic and the estimated quantiles
necessarily exhibit opposite signs, see the quantile formula
(11). Consistent with Theorem 1, the sign of the bias in the Hill
estimator corresponds with the sign of b. Notice also that bias
and standard error of the Hill statistic are smaller for heavier
tails. This is because lighter tails are closer to a thin tailed local
alternative like the normal distribution that does not satisfy (1).
This decreases the accuracy of tail estimation techniques that as-
sume regular variation as a starting point. It is also worth notic-
ing what happens when the second order parameter p changes
for given values of «. The Burr outcomes reveal that the bias
and standard error of the Hill estimator decrease for higher val-
ues of p, i.e. the more the tail expansion (1) approximates a pure
Pareto tail the smaller will be the bias and estimation risk. The
lower panel of the table illustrates the impact of temporal depen-
dence on bias and variance properties of tail index and quantile
estimators. Both higher serial correlation in the AR(1) processes
as well as a higher persistence in volatility clustering (Stochastic
Volatility and GARCH model class) increase bias and standard
error.

Next we add breaks in the tail index to the simulation setup in
order to see how this alters the finite sample performance of tail
index and extreme quantile estimation as compared to Table 1.
Table 2 reports the corresponding outcomes.

For sake of convenience we limit ourselves to those i.i.d. cases
where the true quantile is known such that we can calculate the
Root Mean Squared Error (RMSE) for the latter estimator. We either
assume that tails become fatter (a decrease in o or “thin-to-fat”
scenario) or thinner (an increase in « or “fat-to-thin” scenario).
Moreover, we vary the within-sample location r of the break date
(r=0.25, 0.50 and 0.75). For sake of comparison, we also report
the previous table’s tail index and quantile estimates without tail
breaks. Evidently, the “true” quantile relevant for current risk man-
agement and stability assessments is the quantile based on the
post-break tail index. This e.g. implies that we have to compare
the outcomes for the break scenario (a1, o) = (4, 2) with the no
break case of o =2.

The main message of Table 2 is that the finite sample perfor-
mance deteriorates in the presence of breaks as compared to
the situation without breaks. How big the impact of breaks on fi-
nite sample performance is crucially depends on the location of
the break and the direction of the tail index shifts. Nonsurprising-
ly, a fat-to-thin shift (thin-to-fat shift) leads to an overestimation
(underestimation) of the true tail risk - as measured by the true
tail quantile g,. Moreover, the erosion in finite sample perfor-
mance due to the presence of breaks is more severe when the
break occurs relatively late in the sample. Understandably, this
is due to the fact that the bulk of the data used in estimating
the full sample tail indices and quantiles do not exhibit the cur-
rently relevant tail index. Finally, notice that the impact of tail in-
dex breaks on finite sample performance is more severe under the
fat-to-thin regime shift. The intuition behind this result is that the
Hill statistic and quantile estimation is conditional upon the m
largest observations such that outlier behavior from the fat tailed
initial sample remains in the selection of the m largest observa-
tions in the latter part of the sample. This is not the case under
the thin-to-fat regime shift.
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Table 1

Tail index and quantile estimation in the absence of breaks.
DGP Tail index est. Quantile est. True q

o s.e. (&) RMSE(&) q s.e.(q) RMSE(q)

Panel A: i.i.d. models
Stable(a)
1.2 1.23 0.06 593.57 155.43
1.5 1.60 0.15 128.23 38.92
Student(o)
2 1.91 0.12 0.15 70.84 13.30 15.32 63.23
4 3.60 0.41 0.60 13.16 1.88 2.06 12.31
Burr(o,—p)
(2,-1) 1.94 0.08 0.10 97.22 14.05 16.07 89.44
(2,-5) 1.99 0.03 0.03 91.28 6.04 6.31 89.44
(4,-1) 3.88 0.17 0.21 9.81 0.70 0.78 9.46
(4, -5) 3.98 0.06 0.06 9.54 0.31 0.32 9.46
Panel B: dependence in the first or second moment
AR(a, 0)
(1.5,0.2) 1.61 0.16 0.20 135.11 49.57
(1.5,04) 1.62 0.19 0.23 146.75 70.23
SVSTU(«, 0)
(4,0.85) 3.56 0.41 0.60 13.19 1.89 2.09 12.31
(4,0.95) 3.57 0.42 0.60 13.16 1.90 2.08 12.31
GARCH(«,0)
(4,0.85) 3.57 0.41 0.59 7.28 1.46
(4,0.95) 3.58 0.50 0.65 7.54 4.08

Notes: We simulate averages, standard errors and Root Mean Squared Errors (RMSEs) for the tail index and the tail quantile for samples of 8000 draws and for 10,000
replications. The corresponding significance level for the VaR estimation equals the inverse of the sample size. We generate symmetric stable draws using the simulation
ik
exponentially distributed with mean 1. We obtain Student-t draws by using independent standard normal draws N; (i=1,...,7) in the following way:
Xstudent = N1(N3 + N2 + .. N2)"1/2 with v the degrees of freedom parameter. We define the Burr df as F(x) =1 — (1 + x*)!/* where o is the tail index and p = —f/x the second
order parameter. We obtain Burr draws by equating uniform (0;1) draws to F(x) and by solving the expression for x. We use an AR(1) process with nonzero first order serial
correlation 6 and with symmetric stable innovations (with tail index o) to generate serially correlated data. We simulate a stochastic volatility model based on Student-t

method of Samorodnitsky and Taqqu (1994): Xsapie = os(1-27) 'where 0 < o < 2 represents the tail index. We draw the parameter y uniformly on [—%;%]| whereas W is
W 232

draws (SVSTU) using the expression Xsysiy = U %Ht with y?(v) the chi-square df with » degrees of freedom, U; = #1 a discrete random variable with state probability of

1/2 and H; = BQ; + 0H;_; a persistent AR(1) process where the innovations Q; originate from a standard normal df. Finally, we also simulate from a GARCH(1,1) model with
conditionally normal innovations and where the sum of the GARCH parameters 0 = 8o + f8; is chosen such that the tail index of the corresponding unconditional df equals 4.

Table 2

Tail index and quantile estimation when breaks are present.
DGP Break Tail Index est. Quantile est. True q

(oq, 0t2) a s.e.(d) RMSE(&) q s.e.(q) RMSE(q)

Panel A: Student
No break (2,2) 191 0.12 0.15 70.89 13.27 15.32 63.23
r=025 (4,2) 1.98 0.12 0.13 57.32 10.24 11.82 63.23
r=0.50 (4,2) 2.14 0.14 0.19 42.37 7.32 22.11 63.23
r=0.75 (4,2) 2.44 0.16 0.47 27.49 4.17 35.98 63.23
No break (4,4) 3.57 0.42 0.60 13.14 1.89 2.07 12.31
r=025 (2,4) 2.45 0.16 1.56 27.46 4.16 15.71 12.31
r=0.50 (2,4) 213 0.14 1.87 42.41 7.37 30.99 12.31
r=0.75 (2,4) 1.98 0.13 2.02 57.56 10.41 46.43 12.31
Panel B: Burr (p=-1)
No break (2,2) 1.94 0.08 0.10 96.76 13.81 15.63 89.44
r=0.25 (4,2) 1.95 0.09 0.09 82.82 11.89 13.61 89.35
r=0.50 (4,2) 2.02 0.09 0.09 62.79 8.92 28.09 89.35
r=0.75 (4,2) 2.32 0.11 0.34 34.58 4.50 55.04 89.35
No break (4,4) 3.88 0.17 0.21 9.83 0.69 0.78 9.46
r=025 (2,4) 2.32 0.11 1.68 34.54 4.49 25.49 9.46
r=0.50 (2,4) 2.02 0.09 1.98 62.71 8.83 53.98 9.46
r=0.75 (2,4) 1.95 0.09 2.05 82.66 11.85 74.15 9.46
Panel C: Burr (p = -5)
No break (2,2) 1.990 0.03 0.03 91.24 5.99 6.25 89.44
r=025 (4,2) 2.155 0.03 0.16 62.57 3.92 27.15 89.44
r=0.50 (4,2) 2.451 0.04 0.45 37.45 2.14 52.04 89.44
r=0.75 (4,2) 2.977 0.05 0.98 19.84 0.95 69.61 89.44
No break (4,4) 3.980 0.06 0.07 9.55 0.31 033 9.46
r=025 (2,4) 2.978 0.05 1.02 19.81 0.94 10.40 9.46
r=0.50 (2,4) 2.451 0.04 1.54 37.41 2.12 28.03 9.46
r=0.75 (2,4) 2.156 0.03 1.84 62.46 3.90 53.14 9.46

Notes: We simulate averages, standard errors and Root Mean Squared Errors (RMSEs) for the tail index and the tail quantile for samples of 8000 draws and for 10,000
replications. The corresponding significance level for the VaR estimation equals the inverse of the sample size. We represent the location of the breaks by r.
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The asymptotic distribution of the considered stability tests
crucially depends on the asymptotic behavior of the underlying
Hill statistic described in Theorem 1. Whereas condition (A) ren-
ders one set of critical values that only applies under pure Pare-
to-type tail behavior, condition (B) implies that the parameter
@ =sign(b)(2p/a)"/? determining the asymptotic bias of the Hill
estimator also enters the asymptotic critical values. In this section
we investigate the impact of this asymptotic bias term on the crit-
ical values, power and ability to date breaks in finite samples. In
theory, it is possible to calculate the biased as well as the bias-
corrected asymptotic critical values with great precision provided
one knows the parameter ¢. As to date, however, there are no
estimators for ¢ that exhibit a satisfactory finite sample perfor-
mance that is robust across the main types of regularly varying
tail models, see e.g. Danielsson and de Vries (1997) or Gomes
et al. (2003).'> Moreover, whereas the asymptotic distributions
across different DGP’s only differ due to differences in ¢, the finite
sample critical values, power and break date estimates may also de-
pend on the sample size n and the optimal value for m. Otherwise
stated, we would like to know to what extent the bias of the Hill
estimator influences the finite sample size and power properties
of the stability tests as well as their ability to accurately identify
break dates.

Tables 3 and 4 report simulated critical values for i.i.d. models
and models that exhibit temporal dependence, respectively. We
split each table in three panels for the recursive, rolling and
sequential tests in (5)-(7). We calculate the quantiles of the test
statistics for two different sample sizes and generate 20,000
Monte Carlo replications for the considered DGP’s. We use these
Monte Carlo replications to obtain estimates of the 90th, 95th
and 99th percentile of the stability tests’ finite sample
distribution.

The heterogeneity in the finite sample critical values across dif-
ferent DGP’s is comparable with the preceding tables on bias and
estimation risk for the Hill and quantile estimators. This illus-
trates the fact that the DGP’s under consideration deviate from
pure Pareto tail behavior and also exhibit very different 2nd order
tail behavior. Critical values and their estimation risk are higher
for those cases that exhibit a stronger bias in the Hill estimator.
More specifically, higher values of the tail index « and the persis-
tence parameter 6 (either standing for serial correlation or volatil-
ity persistence) increase the critical values/estimation risk
whereas higher values of the second order parameter p (cf. Burr
df) decrease the asymptotically unbiased critical values reported
in Quintos et al. (2001). This should not surprise given the fact
that the Burr tail comes close to a Pareto tail for p = —5 and that
the Hill statistic is asymptotically unbiased for pure Pareto data.
But Tables 3 and 4 also illustrate that using asymptotically unbi-
ased critical values lead to a huge overrejection of the null of
parameter constancy.

Next, Tables 5 and 6 report finite sample power and estimates
of the breakpoints for the recursive, rolling and sequential stability
test, respectively. We consider sudden upwards and downwards
jumps in o of different magnitudes and at different points in time
r. We perform finite sample power calculations and breakpoint
estimates for 20,000 replications and conditional on the finite sam-
ple critical values from Tables 3 and 4.

The direction of change in « seems to be crucial for the finite
sample power and ability to date breaks. The recursive and roll-
ing tests both exhibit satisfactory power if o decreases. However,

15 Quintos et al. (2001, p. 639) also propose a bias correction procedure under the
restriction that sign(b) = 1. Although this sign restriction holds for the class of stable
dfs, b is negative for a majority of regularly varying models. The parameter b can be
positive or negative for real data sets which implies that the bias correction procedure
of Quintos et al. (2001) increases the bias if sign(b) = —1.

the power of the rolling test is larger in detecting an increase in
o. One can understand the latter outcome by observing that (2) is
based on the m largest observations so that extremal returns
occurring in the initial recursive sample will partly remain in
the selection of the m highest order statistics when the sample
size increases. This initial extremes dominance when o < o, does
not occur for the rolling test since the impact on the Hill estima-
tor of extremal behavior that occurs in the initial sample gradu-
ally drops out when the rolling window is shifted through the
total sample. The sequential test seems to do poorly, although
the power differs quite a lot depending on the location of the
break and the direction of the change in «. As concerns the abil-
ity to date breaks, the recursive test clearly outperforms the
other two tests for most considered DGP’s provided the break
scenario implies an increase in tail fatness (o > o»).! However,
we can easily resolve the lack of power for one type of o-jump
by performing the test both in calendar time (“forward” recursive
test) as well as by inverting the sample (“backward” recursive
test). The forward (backward) version of the recursive test then
signals falls (rises) in o. This is the strategy implemented in the
empirical application.

Sofar the general discussion on power and break date ability.
Notice that there are also large differences in power results and
break point detection across different DGP’s. The determinants
of the bias in the Hill estimator may again be held responsible
for this heterogeneity. More specifically, higher values of the per-
sistence parameter 0 (either standing for serial correlation or vol-
atility persistence) increase the bias in the Hill estimator and the
bias in the estimated break dates but decrease the power. On the
other hand, higher values of the second order parameter p (cf.
Burr df) decrease the bias in the Hill estimator and the bias in
the estimated break dates but increase the power. Thus, Tables
5 and 6 provide convincing evidence that the bias in the Hill esti-
mator is also influencing the stability tests’ power and ability to
date breaks. Indeed, the power for the Burr case with p = -5 lies
close to 100%, even in relatively small samples whereas bias
and estimation risk for the break date estimates are negligibly
small.

4. Empirical results

We want to assess whether the propensity towards financial
extremes changes over time for different asset classes in devel-
oped and emerging markets. For that purpose we use a boot-
strap-based recursive version of the Quintos et al. (2001)
stability test. The recursive test outperforms the rolling and
sequential tests in terms of finite sample power and ability to date
breaks. We therefore limit ourselves to using the recursive test in
the empirical application.

It is well-known that standard regression-based risk proxies
like standard errors, CAPM-ps or factor model loadings are not con-
stant over time, see e.g. Ross et al. (2005). We like to know whether
and to what extent this instability in traditional risk measures
transfers to unconditional tail risk measures like e.g. the tail index
or tail quantiles evaluated far into the distributional tail. The risk-
iness of assets may also differ considerably across asset classes
and/or regions (e.g. developed vs. emerging markets). Our empiri-
cal investigation therefore encompasses a large cross section of dif-
ferent asset types (stocks, bonds, commodities, foreign exchange,
gold, silver and oil). We extract data from Thomson Datastream
and express financial returns as log price differences between daily

16 The power and break date results show that satisfactory power is a necessary but
not sufficient condition for accurate breakpoint detection. The rolling test under
o1 < o provides a nice illustration.
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Table 3
Small sample critical values for recursive, rolling and sequential tests: i.i.d. models.
DGP n=500 n=2000
0.90 0.95 0.99 0.90 0.95 0.99
Panel A: Recursive test
Stable(a)
12 1.97 (0.04) 2.78 (0.08) 5.22 (0.20) 2.00 (0.02) 2.67 (0.03) 4.64 (0.19)
15 5.12 (0.13) 8.39 (0.19) 20.37 (1.27) 3.41 (0.10) 4.97 (0.20) 9.61 (0.63)
Student(a)
2 1.99 (0.05) 2.85 (0.06) 5.80 (0.26) 1.84 (0.02) 2.43 (0.04) 424 (0.15)
4 2.42 (0.08) 3.87 (0.21) 9.20 (0.81) 2.18 (0.04) 3.17 (0.08) 6.33 (0.34)
Burr(o, p)
(2,-1) 1.81 (0.03) 2.43 (0.03) 435 (0.19) 1.80 (0.02) 2.29 (0.03) 3.69 (0.12)
(2,-5) 1.54 (0.03) 1.95 (0.04) 3.07 (0.09) 1.56 (0.01) 1.93 (0.01) 2.84 (0.07)
Panel B: Rolling test (y=0.2)
Stable(a)
1.2 2.40 (0.07) 3.33 (0.08) 5.98 (0.22) 2.33 (0.05) 3.00 (0.10) 4.82 (0.18)
15 14.20 (0.54) 22.44 (1.18) 54.82 (4.69) 6.12 (0.13) 8.33 (0.26) 14.84 (0.79)
Student(o)
2 2.87 (0.04) 4.10 (0.11) 7.97 (0.44) 2.15 (0.05) 2.87 (0.08) 4.84 (0.22)
4 4.81(0.19) 7.46 (0.31) 17.66 (1.10) 3.06 (0.07) 438 (0.15) 8.40 (0.34)
Burr(a, p)
(2,-1) 1.95 (0.01) 2.64 (0.03) 4.64 (0.16) 1.73 (0.02) 2.22 (0.04) 3.51 (0.06)
(2,-5) 1.66 (0.01) 2.10 (0.03) 3.25(0.09) 1.53 (0.01) 1.82 (0.02) 2.55 (0.05)
Panel C: Sequential test
Stable(a)
12 21.67 (0.53) 31.73 (0.86) 59.01 (1.89) 16.21 (0.45) 22.54 (0.96) 40.38 (1.98)
15 24.33 (0.73) 39.03 (1.53) 87.89 (3.10) 16.51 (0.40) 24.13 (1.12) 48.81 (2.29)
Student(ot)
2 21.49 (0.34) 31.54 (1.04) 60.26 (3.62) 17.86 (0.43) 25.18 (0.80) 45.70 (1.22)
4 25.05 (0.47) 38.41 (0.77) 77.96 (3.55) 19.04 (0.67) 28.16 (1.06) 53.39 (2.55)
Burr(o, p)
2,-1) 19.03 (0.33) 27.13 (0.48) 49.78 (1.60) 16.80 (0.31) 23.09 (0.61) 39.84 (1.17)
(2,-5) 20.14 (0.24) 27.72 (0.59) 49.08 (1.21) 19.75 (0.21) 26.37 (0.42) 43.87 (0.88)

Notes: We report critical values for varying sample sizes n, and different levels of statistical significance. We base critical values on 20,000 Monte Carlo replications. We report
corresponding standard errors for the critical values between brackets (s.e.). The parameters o and p =-p/x refer to the tail index and the second order parameter,

respectively.

closes. We express developed and emerging stock and bond indices
in local currency. The exchange rate data also consist of a devel-
oped and emerging currency block. We express all currencies
against the US dollar. Finally, prices of oil (Brent Crude), gold and
silver are in US$ per barrel or per troy ounce, respectively. We
let all series end on 31 December 2009 but they exhibit different
starting points depending on data availability.!”

Large institutional investors like pension funds in search of
fresh diversification opportunities invest in a growing variety of as-
set classes and geographic regions and would like to know whether
and to what extent these different asset tail risks change over time.
Moreover, we distinguish between stock indices and foreign ex-
change rates of developed and emerging markets. Given the fact
that large institutional investors increasingly invest in emerging

17 We abbreviate developed and emerging stock and bond indices as follows: France
(FR), Germany (GE), United Kingdom (UK), United States (US), Japan (JP), Indonesia
(INDO), Malaysia (MAL), Thailand (THAI), Mexico (MEX), Chile (CHIL). We exclude
emerging bond index data because of insufficient data availability. We consider
dividend-adjusted stock indices and 10-year benchmark government bonds. The
industrial currency block covers the euro (EUR, and before January 1999 the Deutsche
mark), the Japanese yen (JPY), the Pound sterling (GBP), the Swiss franc (CHF) and the
Canadian dollar (CND). The emerging currency block includes the Indonesian rupiah
(IRD), the Malaysian ringgit (MYR), the Thai baht (THB), the Chilean peso (CLP) and
the Mexican peso (MXN). Developed/emerging stock market series and developed/
emerging currencies start from 1 January 1973, 2 April 1990, 3 January 1972 and 3
January 1994, respectively. Bond series start in the first half of the 80s: United States,
United Kingdom and Germany (1 January 1980), Japan (2 January 1984), France (2
January 1985). Finally, commodities start on 3 January 1972 (gold and silver) and 4
January 1982 (oil), respectively.

markets, it is important to assess whether emerging market assets
exhibit relatively more frequent shifts in tail behavior. One may
expect this to be the case due to a less stable political and institu-
tional environment as compared to more developed countries.'®

The simulation section illustrates that several forms of temporal
dependence bias the recursive test’s finite sample critical values.
Upon assuming GARCH-type volatility clustering as the main
source of temporal dependence, we implement a GARCH-corrected
version of the recursive test:

Q = sup ;' Ya(t), (12)

reRe

where 7, is the estimate of the time varying scaling factor, see Quin-
tos et al. (2001, p. 643). The extensive Monte Carlo simulations in
the previous section convincingly show that the test’s finite sample
distribution depends on the parameters of the regularly varying tail.
In other words, there is no single set of critical values that applies to
all return series simultaneously. As a solution to this problem, we
use bootstrap-based critical values at the 95% and 99% levels to

18 A logical multivariate extension would be to investigate whether and to what
extent the cross-asset tail dependence shifts over time. Tail dependence can be
identified either by means of copulae evaluated in the tail area or by a tail index of an
auxiliary variable that summarizes the dependence structure in the tails, see e.g.
Hartmann et al. (2006) for an earlier application on the multivariate dependence
structure of bank stocks. Straetmans et al. (2008) investigate whether the 9/11
terrorist attacks had a significant impact on the tail dependence between US sectoral
indices and the market as a whole.
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Table 4
Small sample critical values for recursive, rolling and sequential tests: dependent models.
DGP n=>500 n=2000
0.90 0.95 0.99 0.90 0.95 0.99
Panel A: Recursive test
ARSTA(a, 0)
(1.2,0.2) 2.65 (0.07) 4.04 (0.13) 8.73 (0.71) 2.65 (0.05) 3.74 (0.07) 6.97 (0.27)
(1.2,0.4) 4.01 (0.10) 6.43 (0.23) 15.05 (1.02) 4.01 (0.08) 5.97 (0.13) 11.79 (0.64)
SVSTU(«, 0)
(2,0.85) 2.25 (0.04) 3.27 (0.08) 6.67 (0.36) 1.92 (0.04) 2.56 (0.05) 4.59 (0.18)
(2,0.95) 2.56 (0.06) 3.82(0.12) 7.96 (0.47) 2.05 (0.05) 2.78 (0.06) 4.95 (0.23)
GARCH(«, 0)
(4,0.85) 3.41 (0.15) 6.08 (0.31) 20.46 (1.68) 2.63 (0.03) 3.42 (0.06) 7.25 (0.71)
(4,0.95) 4.14 (0.14) 7.67 (0.30) 26.20 (2.50) 3.33 (0.07) 5.05 (0.21) 15.30 (1.63)
Panel B: Rolling test
ARSTA(2, 0)
(1.2,02) 3.16 (0.05) 4.40 (0.11) 8.26 (0.49) 3.12 (0.08) 4.07 (0.08) 6.54 (0.24)
(1.2,0.4) 4.64 (0.07) 6.63 (0.15) 12.70 (0.46) 4.75 (0.08) 6.26 (0.09) 10.53 (0.34)
SVSTU(,, 6)
(2,0.85) 3.24 (0.10) 454 (0.20) 8.97 (0.42) 2.27 (0.04) 3.04 (0.05) 5.05 (0.24)
(2,0.95) 3.73 (0.08) 5.22 (0.13) 9.87 (0.43) 2.46 (0.05) 3.25 (0.09) 5.48 (0.16)
GARCH(o,,0)
(4,0.85) 4.86 (0.08) 8.31 (0.26) 25.80 (1.84) 2.05 (0.03) 2.71 (0.06) 5.66 (0.26)
(4,0.95) 5.75 (0.10) 9.81 (0.34) 29.06 (2.28) 2.89 (0.08) 4.31(0.14) 10.31 (0.61)
Panel C: Sequential test
ARSTA(«, 0)
(1.2,0.2) 26.86 (0.78) 40.68 (1.30) 85.68 (2.97) 21.41 (0.42) 31.06 (0.99) 60.6 (3.97)
(1.2,0.4) 35.98 (0.64) 56.60 (2.13) 133.09 (5.63) 30.33 (0.45) 46.62 (0.77) 100.18 (4.54)
SVSTU(c, 6)
(2,0.85) 21.24 (0.68) 31.60 (0.95) 61.84 (2.80) 17.84 (0.33) 25.34 (0.63) 45.50 (2.34)
(2,0.95) 21.25 (0.59) 31.54 (0.95) 60.88 (2.34) 17.72 (0.33) 25.15 (0.58) 45.62 (2.17)
GARCH(«, 0)
(4,0.85) 38.55 (1.11) 59.42 (2.31) 123.01 (3.55) 38.11 (0.88) 57.20 (1.01) 117.21 (4.69)
(4,0.95) 36.76 (0.97) 57.25 (1.92) 119.74 (6.98) 214.97 (0.90) 264.68 (1.05) 396.78 (6.50)

Notes: We report critical values for varying sample sizes n, and different levels of significance. We base critical values on 20,000 Monte Carlo replications. We report
corresponding standard errors for the critical values between brackets (s.e.). We denote the first order serial correlation of an autoregressive process with stable innovations

(ARSTA), the volatility persistence parameter in GARCH(1,1) models and stochastic volatility models with Student-t innovations (SVSTU) by the parameter 0.

determine finite sample critical values for each financial series sep-
arately. As the scaling factor in (12) already corrects the test for any
temporal dependence, the bootstrap no longer has to take care of
any temporal dependence and we can resort to a “wild” version
of the bootstrap instead of a block bootstrap. We run the recursive
test both in calendar time (forward test) and in reverse calendar
time (backward test) in order to detect potential falls and rises in
the tail index, respectively.

Table 7 reports stability test results for a large variety of stock
indices, bond indices, exchange rates and commodities. Further-
more, we distinguish between mature and emerging stock markets
and currencies. Table 7 also contains tail index and extreme quan-
tile estimates using the estimators earlier introduced in (2) and
(11).'° We calculate the VaR quantiles for a marginal significance le-
vel p of 0.015% which implies that we expect the corresponding ex-
treme events to happen once every 6500 days (this amounts to once
every 6500/260 ~ 25 years).?° We use the Beirlant et al. (1999)
method to determine the optimal number of upper order extremes
m” used in estimating the test statistic, the bootstrap-based critical
values and the extreme quantiles. As for the maximum values for
the forward and backward version of test (12) we include these in
the columns labelled Qr and Qg, respectively. Evidently, bootstrapped

19 In case of two breaks t; < t, we condition the pre-break and post-break estimates
on the subsamples [1,t;] and [t;,n] respectively.
20 We assume that there are 260 trading days in a calendar year.

critical values are identical for the forward and backward test. We
reject the null of parameter constancy if the sup-value calculated
according to (12) exceeds the bootstrap-based critical value, e.g.
Q > CVp(p) with p = 5% or 1%. We report statistically significant break
dates between brackets beneath the testing values (dd/mm/yy).
First and foremost, we observe that the overall number of tail
index breaks remains limited. We only reject the null hypothesis
of a constant tail index at the 1% level for 6 out of 28 assets. We
detect the majority of breaks in emerging currency markets. The
emerging currency tail break dates confirm earlier research by
Candelon and Straetmans (2006) for a shorter sample of Asian cur-
rencies. Both the forward breaks (tail index drops) and backward
breaks (tail index rises) fall within the time window of the Asian
financial crisis. Moreover, the forward breaks precede the back-
ward breaks which suggests a U-shaped pattern for the tail index
(and an inverted U-shape pattern for the quantile). As a result of
unsustainable speculative pressures all considered Asian currency
regimes were abolished during the second half of 1997. The Central
Banks of Thailand, Malaysia and Indonesia all announced a man-
aged float in the first half of July. For Thailand, the estimated for-
ward break nearly perfectly coincides with that regime shift but
the forward breaks for the other countries seem to lag behind
the managed float announcement for approximately 6 months.?!

21 This break date delay may be due to the bias in the Hill estimator that may be
more severe than for other assets.
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We only find a backward break (tail index rise) for the Mexican Peso
which can be interpreted as evidence for the success of the rescue
and stabilization policies set up by the Mexican government and
the IMF in the aftermath of the December 1994 devaluation of the
Mexican Peso against the US$.%? Finally, the US stock market (stock
market crash of 1987) and the UK bond market (expansive monetary
policy after the 1987 stock market crash) exhibit a significant tail in-
dex shift. All other stock and bond market tails seem to exhibit sta-
tionary tail behavior.

We also report pre-break and post-break tail index and quantile
values for the statistically significant breaks in the tail index at the
1% level. The bulk of these extreme quantile shifts is situated in
emerging currency markets. Notice that the post-break emerging
tail risk drops dramatically compared to its pre-break value (ex-
cept for the Thai currency). This suggests that the backward breaks
(rise in the tail index) more than offset the preceding forward
breaks (drops in the tail index). The stronger statistical significance
(higher sup-values) for the backward breaks point in that direction
indeed.

Turning to the extreme VaR estimates in the right part of Table 7
one first of all observes the huge cross asset differences in extreme
downside risk. Exchange rate regimes in emerging markets seem
completely ineffective in dampening exchange rate volatility as
the VaR estimates are much larger for emerging currency regimes
as compared to floating (developed) currency markets. Thus at-
tempts towards exchange rate stabilization in emerging markets
seem counterproductive over the considered sample period, see
also Koedijk et al. (1992) for earlier evidence. Legal and institu-
tional restrictions in emerging stock markets also do not help to
curb emerging equity volatility although it does not seem to have
such adverse effects as in forex markets. As a matter of fact, emerg-
ing and developed stock market tails seem to exhibit extreme
downside risk of comparable magnitudes. Finally, mature stock
markets exhibit more extreme downside risk than mature bond
markets, see also de Haan et al. (1994) or Hartmann et al. (2004).

In order to better grasp the implications of non-constant down-
side risk for risk management, reconsider the earlier discussed EVT
application of allocating upper limits on open positions in the forex
dealing room of an international bank. We argue that the maxi-
mum allowable investment for forex traders in an open position
equals I = s/g, for a given critical loss level s < 0 and with ¢, the ex-
treme quantile estimator as defined in (11). Given the break results
for emerging currencies, full sample trading limits are set too con-
servatively because they do not take into account the “thinning” of
the tails due to e.g. subsequent liberalizations and abolishment of
exchange rate regimes. Thus, given the unstable tail behavior of
emerging currency returns, it is advisable to use shorter data win-
dows that started more recently (ideally after a break has occurred
in the tail behavior) for determining trading limits on currency
positions. For example, consider a US bank trader that wants to
build up a position in Mexican Peso. The superior management
determines that the maximum loss the bank can suffer without
running into solvency problems is 10,000,000US$. If the trader
determines his trading limit using the full sample of Mexican
Peso/US$ quotes, the relevant full sample 0.015% VaR quantile in
Table 7 reads 30.28%. This, in turn, induces a trading limit of
I =10,000,000US$/0.3028 = 33,025,099USS$. However, using the

22 The stability test does not detect this latter devaluation because the test’s interior
region R,=[0.15n,0.85n] does not contain December 1994. The same applies for
potential breaks due to the 2007-2010 credit crunch. If present, they only become
identifiable when the sample gets longer and the candidate break dates fall within the
interior region. However, even if breaks are inside the interior region, they are more
difficult to detect when they lie close to the interior region boundaries. This is because
the recursive stability test’s finite sample power decreases for breaks that lie close to
the interior sample boundaries, see our own simulation section results or Candelon
and Liitkepohl (2001).

Table 5
Size-corrected finite sample power for recursive, rolling and sequential tests.
DGP(o1, o) 1 =500 n=2000
r=0.25 r=05 r=0.75 r=025 r=050 r=0.75
Stable(1.5,1.2)
rec 22 32 25 53 71 55
rol 7 8 5 32 38 22
seq 14 28 42 15 45 69
Stable(1.2,1.5)
rec 1.18 1.36 1.5 1.96 2.66 1.1
rol 5 9 7 22 37 30
seq 6 3 1 10 4 2
Student(4,2)
rec 21 32 24 49 73 62
rol 6 6 4 27 32 15
seq 10 21 35 12 141 71
Student(2,4)
rec 0.5 0.7 2 2.54 0.94 1.18
rol 4 6 5 15 31 27
seq 3 1 0.4 0.6 0.1 0.6
Burr(4,2)
p=-1
rec 31 37 26 52 66 53
rol 19 22 15 35 45 30
seq 17 41 57 14 45 68
Burr(2,4)
p=-1
rec 1.16 0.5 13 0.3 0.22 1.76
rol 15 21 19 32 46 36
seq 1 0.2 0.08 0.28 0.02 0.1
SVSTU(4,2)
0=0.95
rec 20 31 23 49 71 59
rol 12 22 16 43 66 55
seq 10 22 36 12 43 71
SVSTU(2,4)
0=0.95
rec 0.56 0.70 1.80 3.16 1.84 1.16
rol 0.2 0.26 0.66 1.28 0.74 0.8
seq 1.82 1.1 1.98 0.34 0.20 0.64
ARCH(4,2)
rec 6.2 16.74 22.18 17.42 31.54 22.56
rol 2.7 3.62 4.16 7.94 15.86 22.16
seq 6.72 10 14.88 9.14 20.24 40.6
ARCH(2,4)
rec 0.34 2.86 2.7 0.06 0.36 0.94
rol 2.82 1.8 1.2 54 3.44 2.06
seq 1.30 0.90 1.74 0.32 0.08 0.54

Notes: We report the power for different sample sizes (n =500, 2000), different
locations of the (true) breakpoints (r = 0.25, 0.50, 0.75) and different jump scenarios
(a1, 02) for the tail index. The power is size-corrected using finite sample critical
values and is calculated as the rejection frequency under the null hypothesis of
parameter constancy using 20,000 Monte Carlo replications. The parameters o and
p = —pJo refer to the tail index and the second order parameter, respectively. We
denote the volatility persistence parameter in the stochastic volatility models with
Student-t innovations (SVSTU) by 0.

post-break 0.015% VaR quantile renders a trading limit of
Inest = 10,000,000US$/0.1109 = 90,171,326US$  which is nearly
three times as high. In other words, taking into account that the ex-
treme risk of the currency has diminished over the sample period
due e.g. to regime changes also renders the maximum allowable
investment less conservative. One can easily generalize this styl-
ized example for one currency to a portfolio of currencies but the
principle remains the same.

The results on the currency tails are also interesting from a pol-
icy perspective. Although many countries exhibit a fear of floating,
fixing the exchange rate in one way or another by e.g. capital
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Table 6
Breakpoint estimates for recursive, rolling and sequential tests.
DGP (oy, 02) n=500 n=2000
r=0.25 r=0.5 r=0.75 r=0.25 r=0.50 r=0.75
Stable(1.5,1.2)
rec 0.42 (0.17) 0.53 (0.13) 0.64 (0.16) 0.33 (0.12) 0.50 (0.10) 0.66 (0.14)
rol 0.37 (0.22) 0.39 (0.14) 0.51 (0.18) 0.65 (0.10) 0.36 (0.11) 0.48 (0.18)
seq 0.81 (0.08) 0.79 (0.09) 0.81 (0.04) 0.76 (0.14) 0.70 (0.13) 0.80 (0.05)
Stable(1.2,1.5)
rec 0.62 (0.11) 0.55 (0.15) 0.48 (0.17) 0.48 (0.13) 0.48 (0.08) 0.48 (0.16)
rol 0.68 (0.17) 0.81 (0.14) 0.86 (0.20) 0.72 (0.17) 0.84 (0.11) 0.95 (0.09)
seq 0.83 (0.03) 0.83 (0.05) 0.84 (0.01) 0.83 (0.02) 0.82 (0.03) 0.82 (0.03)
Student(4,2)
rec 0.40 (0.17) 0.53 (0.13) 0.67 (0.15) 0.33 (0.13) 0.51 (0.10) 0.70 (0.11)
rol 0.37 (0.22) 0.39 (0.14) 0.49 (0.17) 0.26 (0.10) 0.37 (0.11) 0.49 (0.18)
seq 0.80 (0.09) 0.78 (0.10) 0.81 (0.04) 0.78 (0.11) 0.71 (0.13) 0.80 (0.04)
Student(2,4)
rec 0.58 (0.20) 0.42 (0.22) 0.41 (0.17) 0.53 (0.11) 0.51 (0.12) 0.39 (0.15)
rol 0.71 (0.18) 0.81 (0.14) 0.85 (0.20) 0.72 (0.17) 0.83 (0.11) 0.95 (0.08)
seq 0.58 (0.20) 0.42 (0.22) 0.41 (0.17) 0.53 (0.11) 0.51 (0.12) 0.39 (0.15)
Burr(4,2)
p=-1
rec 0.38 (0.16) 0.51 (0.16) 0.61 (0.19) 0.30 (0.09) 0.50 (0.08) 0.70 (0.10)
rol 0.28 (0.13) 0.37 (0.13) 0.48 (0.18) 0.26 (0.10) 0.37 (0.11) 0.48 (0.18)
seq 0.73 (0.17) 0.74 (0.12) 0.81 (0.05) 0.63 (0.22) 0.66 (0.15) 0.79 (0.06)
Burr(2,4)
p=-1
rec 0.62 (0.16) 0.47 (0.22) 0.40 (0.19) 0.65 (0.16) 0.31 (0.19) 0.37 (0.14)
rol 0.71 (0.18) 0.82 (0.12) 0.92 (0.12) 0.71 (0.17) 0.83 (0.11) 0.94 (0.10)
seq 0.82 (0.04) 0.82 (0.04) 0.69 (0.16) 0.67 (0.17) 0.70 (0.14) 0.75 (0.12)
SVSTU(4,2)
0=0.95
rec 0.40 (0.17) 0.52 (0.14) 0.64 (0.17) 0.35 (0.14) 0.51 (011) 0.56 (0.17)
rol 0.33 (0.19) 0.40 (0.14) 0.49 (0.19) 0.26 (0.10) 0.37 (0.11) 0.48 (0.17)
seq 0.77 (0.12) 0.75 (0.11) 0.80 (0.06) 0.78 (0.10) 0.70 (0.13) 0.79 (0.06)
SVSTU(2,4)
0=0.95
rec 0.63 (0.16) 0.43 (0.21) 0.46 (0.19) 0.58 (0.14) 0.58 (0.13) 0.58 (0.17)
rol 0.72 (0.18) 0.79 (0.15) 0.87 (0.18) 0.70 (0.17) 0.83 (0.11) 0.95 (0.08)
seq 0.81 (0.04) 0.82 (0.04) 0.75 (0.11) 0.83 (0.02) 0.84 (0.01) 0.82 (0.03)
ARCH(4,2)
rec 0.41 (0.18) 0.52 (0.15) 0.65 (0.19) 0.37 (0.15) 0.60 (0.14) 0.75 (0.09)
rol 0.49 (0.27) 0.49 (0.23) 0.54 (0.21) 0.31(0.17) 0.39 (0.15) 0.49 (0.19)
seq 0.71 (0.19) 0.73 (0.14) 0.78 (0.10) 0.77 (0.13) 0.73 (0.12) 0.81 (0.05)
ARCH(2,4)
rec 0.35 (0.23) 0.71 (0.20) 0.67 (0.21) 0.71 (0.15) 0.82 (0.05) 0.82 (0.06)
rol 0.70 (0.20) 0.70 (0.21) 0.62 (0.27) 0.71 (0.17) 0.78 (0.16) 0.88 (0.19)
seq 0.77 (0.17) 0.64 (0.24) 0.63 (0.18) 0.84 (0.07) 0.54 (0.26) 0.61 (0.12)

Notes: We report estimated break dates for different sample sizes (n =500 or 2000), different locations of the (true) breakpoints (r=0.25, 0.50, 0.75) and different jump
scenarios (o1, o) for the tail index. We calculate “candidate” break dates over 20,000 Monte Carlo replications. We obtain average break date estimates by averaging over the
statistically significant “candidate” breaks using the finite sample critical values. The parameters o and p = —p/« refer to the tail index and the second order parameter,
respectively. We denote the volatility persistence parameter in stochastic volatility models with Student-t innovations (SVSTU) by 6.

controls or other restrictions on current account and capital ac-
count convertibility seems counterproductive. The downside risk
estimates, as measured by the extreme quantile g, are nearly al-
ways higher in the presence of regimes. The economic interpreta-
tion is that a float lets exchange rates adjust more smoothly than
any other regime that involves some fixity. Monetary history in-
deed shows that it is extremely difficult for monetary authorities
to establish and sustain perfectly credible and time-consistent
forex regimes. Imperfectly credible capital controls, however, are
to speculators like a red rag to a bull. The inverse relation between
extreme depreciation risk and the abolishment of capital controls
seems to support Friedman'’s old plea for flexible exchange rates,
see e.g. Friedman (1953).

With an eye toward some sensitivity analysis, we also apply the
recursive testing procedure on a few economically meaningful
subsamples around crisis episodes like the dotcom bubble or the
1987 stock market crash. The series that do not exhibit full sample
breaks are not characterized by subsample breaks either as one
would expect. Evidently, subsample breaks should not necessarily
be identical to the full sample breaks if the latter fall outside the
selected subsample. However, when the full sample breaks do fall
in the selected subsample, break results are robust and the location
of the break is only marginally altered by the change in sample
size.

Overall, the empirical results suggest that heavy tails and
corresponding extreme quantiles are remarkably stable over long
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Table 7
Forward and backward recursive testing outcomes.

Assets m* Recursive test Crit.values Tail index and VaR (%)
Qr Qs 0.95 0.99 q(a) q1(04) 42(02)

Panel A: stock markets (local currency)

us 150 522" 0.63 2.78 3.81 11.38 (3.00) 5.25 (4.61) 15.10 (2.72)
(7/9/87)

UK 166 0.52 0.73 2.45 3.43 10.98 (3.19)

FR 142 1.21 1.27 3.44 4.71 10.45 (3.65)

GE 100 1.19 0.46 2.38 3.75 10.16 (3.49)

P 106 1.28 0.22 249 4.13 10.81 (3.43)

INDO 128 1.06 0.96 3.10 4.49 23.49 (2.71)

MAL 105 0.41 0.66 2.87 3.95 17.16 (2.74)

THAI 193 1.33 0.49 2.84 3.93 19.19 (3.06)

MEX 80 1.69 2.12 4.03 5.36 9.24 (4.57)

CHIL 96 0.17 0.36 2.13 3.28 8.56 (3.40)

Panel B: bond markets (local currency)

us 129 0.48 0.60 3.19 4.15 3.60 (4.33)

UK 350 1.46 7.44""" 2.96 4.06 6.44 (2.57) 17.52 (1.89) 4.23 (3.03)

(20/10/87)

FR 110 0.52 0.39 2.94 4.02 2.82 (3.94)

GE 81 1.34 0.95 2.81 4.26 2.25 (4.70)

P 166 1.81 2.56 3.20 433 4,79 (2.58)

Panel C: currencies (w.r.t. US$)

GBP 119 1.20 1.18 2.08 3.20 5.19 (3.44)

EUR 148 1.65 0.41 241 343 4.27 (4.25)

CAN 174 0.61 0.14 3.29 4.47 3.98 (3.33)

JPY 155 1.43 0.37 3.02 4.08 4.27 (4.38)

CHF 311 2.86 1.70 3.80 5.01 5.61 (3.72)

MXN 250 2.53 6.24""" 2.57 4.010 30.28 (1.71) 280.9 (1.07) 11.09 (2.31)

(9/10/98)

CLP 147 0.75 0.85 3.72 5.08 6.70 (2.94)

IDR 267 6.89"" 82" 3.29 4.38 89.41 (1.40) 216.96 (0.58) 26.60 (1.84)
(24/4/98) (3/2/99)

MYR 51 597" 11.16™ 431 6.21 12.09 (2.16) 5.16 (4.51) 2.21(3.73)
(2/1/98) (9/9/99)

THB 100 6.48""" 7.09""" 2.25 3.96 19.55 (1.72) 0.88 (3.42) 6.07 (2.58)
(15/5/97) (19/5/98)

Panel D: commodities

Gold 203 1.92 2.01 244 3.53 17.36 (2.74)

Silver 307 2.47 2.20 2.61 3.81 36.69 (2.35)

oil 150 1.23 0.96 3.45 4.56 23.41 (3.17)

Notes: Country and currency abbreviations stand for: US (United States), UK (United Kingdom), FR (France), GE (Germany), JP (Japan), INDO (Indonesia), MAL (Malaysia), THAI
(Thailand), MEX (Mexico), CHIL (Chile), GBP (British pound), EUR (euro), CAN (Canadian dollar), JPY (Japanese yen), CHF (Swiss franc), MXN (Mexican peso), CLP (Chilean
peso), IDR (Indonesian rupiah), MYR (Malaysian ringgit), THB (Thai baht). We denote the forward and backward version of the recursive test by Qr and Qg, respectively. We

base critical values on 10,000 bootstrapped sample replications.

We report the break dates (dd/mm/yy) of corresponding significant breaks in bold. In case of significant breaks in the tail index, we report Value-at-Risk (VaR) estimates for

the full sample and the subsamples determined by the break.

" We denote statistically significant rejections of the null hypothesis of tail index constancy at the 5% significance level.
""" We denote statistically significant rejections of the null hypothesis of tail index constancy at the 1% significance level.

periods of time for most of the considered assets and asset classes.
Tail index and extreme quantile estimation seem to be useful tools
for assessing long-term tail risk, stress testing and financial stabil-
ity but one has to apply these techniques with care in the presence
of breaks in the tail behavior. Hedging tail risk of portfolios con-
taining large positions in emerging currencies constitutes an
example.

5. Conclusions

This paper provides a thorough study of the finite sample
behavior of some popular tests for detecting time variation in the
tail index of financial returns. The tests are “endogenous” in the
sense that they produce an estimate of the breakpoint location
upon detection of a statistically significant break. Our Monte Carlo
experiment determines critical values, size-corrected power and

the ability to date breaks for a myriad of Data Generating Processes
(DGP’s). The tests all use the Hill estimator for the tail index as an
input. Conform to the bulk of the empirical literature, we select the
number of upper order extremes by minimizing the sample Mean
Squared Error of the Hill statistic. We choose the DGP’s such as to
mimic some popular empirical stylized facts of financial data. The
finite sample critical values, the (size-corrected) power and the
ability to date breaks differ a lot across different distributional
models and sample sizes. Nonsurprisingly, our simulation experi-
ments show that critical values increase and the power and break
date ability decrease when the bias in the Hill estimator becomes
more severe. As there are no satisfactory bias reduction methods
available for the finite sample critical values, we propose a boot-
strap-based procedure for the critical values of the stability test
when working with real-life data. We implement a recursive ver-
sion of the stability test in the empirical application as this version
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outperforms its rolling and sequential counterparts in a simulation
environment. Upon applying the stability test to a large set of asset
classes, both in developed as well as emerging markets, we hardly
detect any breaks at all, except for emerging currency tails. For
those series with breaks in the tail behavior, it is advisable to base
tail risk measures like VaR or expected shortfall on the post-break
sample.

Acknowledgements

We are indebted to the editor of the Journal of Banking and Fi-
nance, Ike Mathur, and an anonymous referee for their constructive
comments and suggestions. We also received constructive feed-
back from seminar participants at the Université d’Orléans, Bath
University, Erasmus University Rotterdam and from conference
participants at INFINITY Dublin 2011.

References

Andersen, T.G., Bollerslev, T., 1997. Intraday periodicity and volatility persistence in
financial markets. Journal of Empirical Finance 4, 115-158.

Andrews, D., 1993. Tests for parameter stability and structural change with
unknown change point. Econometrica 59, 817-858.

Beirlant, ]., Dierckx, G., Goegebeur, Y., Matthys, G., 1999. Tail index estimation and
an exponential regression model. Extremes 2, 177-200.

Candelon, B., Liitkepohl, H., 2001. On the reliability of Chow type tests for parameter
constancy in multivariate dynamic models. Economics Letters 73, 155-160.
Candelon, B., Straetmans, S., 2006. Testing for multiple regimes in the tail behavior
of emerging currency returns. Journal of International Money and Finance 25,

1187-1205.

Danielsson, J., de Vries, C.G., 1997. Tail index and quantile estimation with very high
frequency data. Journal of Empirical Finance 4, 241-257.

Danielsson, ]., de Haan, L., Peng, L., de Vries, C.G., 2001. Using a bootstrap method to
choose the sample fraction in tail index estimation. Journal of Multivariate
Analysis 76, 226-248.

de Haan, L., Stadtmdiller, U., 1996. Generalized regular variation of second order.
Journal of the Australian Mathematical Society (Series A) 61, 381-395.

de Haan, L., Jansen, D.W., Koedijk, K.G., de Vries, C.G., 1994. Safety first portfolio
selection, extreme value theory and long run asset risks. In: Galambos, J.,
Lechner, J., Simiu, E. (Eds.), Proceedings from a Conference on Extreme Value
Theory and Applications. Kluwer Academic Press, Dordrecht.

Dumouchel, W.H., 1983. Estimating the stable index « in order to measure tail
thickness: a critique. Annals of Statistics 11, 1019-1031.

Embrechts, P., Kliippelberg, C., Mikosch, T., 1997. Modelling Extremal Events.
Springer-Verlag, Berlin.

Feller, W., 1971a. An Introduction to Probability Theory and its Applications, vol. I.
John Wiley and Sons, Chicago.

Feller, W., 1971b. An Introduction to Probability Theory and its Applications, vol. II.
John Wiley and Sons, Chicago.

Friedman, M., 1953. Essays in Positive Economics. University of Chicago Press,
Chicago.

Galbraith, ].W., Zernov, S., 2004. Circuit breakers and the tail index of equity returns.
Journal of Financial Econometrics 2, 109-129.

Goldie, C.M., Smith, R., 1987. Slow variation with remainder: theory and
applications. Quarterly Journal of Mathematics 38, 45-71.

Gomes, M.L, de Haan, L., Peng, L., 2003. Semi-parametric estimation of the second
order parameter in statistics of extremes. Extremes 5, 387-414.

Haeusler, E., Teugels, ]., 1985. On asymptotic normality of Hill's estimator for the
exponent of regular variation. Annals of Statistics 13, 743-756.

Hall, P., 1982. On some simple estimates of an exponent of regular variation. Journal
of the Royal Statistical Society (Series B) 42, 37-42.

Hartmann, P., Straetmans, S., de Vries, C.G., 2003. A global perspective on extreme
currency linkages. In: Hunter, W.C., Kaufman, G.G., Pomerleano, M. (Eds.), Asset
Price Bubbles: Implications for Monetary, Regulatory and International Policies.
MIT Press, Cambridge, MA.

Hartmann, P., Straetmans, S., de Vries, C.G., 2004. Asset market linkages in crisis
periods. Review of Economics and Statistics 86, 313-326.

Hartmann, P., Straetmans, S., de Vries, C.G., 2006. Banking system stability: a cross
atlantic perspective. In: Carey, M., Stulz, RM. (Eds.), The Risk of Financial
Institutions. The University of Chicago Press, Chicago.

Hill, B.M., 1975. A simple general approach to inference about the tail of a
distribution. The Annals of Statistics 3, 1163-1173.

Hols, M.C.A.B., de Vries, C.G., 1991. The limiting distribution of extremal exchange
rate returns. Journal of Applied Econometrics 6, 287-302.

Jansen, D.W., de Vries, C.G., 1991. On the frequency of large stock returns: putting
booms and busts into perspective. Review of Economics and Statistics 73, 19-
24.

Jansen, D.W., Koedijk, K.G., de Vries, C.G., 2000. Portfolio selection with limited
downside risk. Journal of Empirical Finance 7, 247-269.

Jondeau, E., Rockinger, M., 2003. Testing for differences in the tails of stock market
returns. Journal of Empirical Finance 10, 559-581.

Koedijk, K.G., Schafgans, M.M.A., de Vries, C.G., 1990. The tail index of exchange rate
returns. Journal of International Economics 29, 93-108.

Koedijk, K.G., Stork, P.A., de Vries, C.G., 1992. Foreign exchange rate regime
differences viewed from the tails. Journal of International Money and Finance
11, 462-473.

Leadbetter, M.R,, Lindgren, G., Rootzén, H., 1983. Extremes and Related Properties of
Random Sequences and Processes. Springer-Verlag, Berlin.

Longin, F.M., 1996. The asymptotic distribution of extreme stock market returns.
Journal of Business 69, 383-408.

Mandelbrot, B., 1963. The variation of certain speculative prices. Journal of Business
36, 394-419.

Mikosch, T., Starica, C., 2000. Limit theory for the sample autocorrelations and
extremes of a GARCH(1,1) process. Annals of Statistics 28, 1427-1451.

Pagan, AR, Schwert, G.W., 1990. Testing for covariance stationarity in stock market
data. Economics Letters 33, 165-170.

Quandt, R., 1960. Test of the hypothesis that a linear regression obeys two separate
regimes. Journal of the American Statistical Association 55, 324-330.

Quintos, C., Fan, Z,, Phillips, P., 2001. Structural change tests in tail behaviour and
the Asian crisis. Review of Economic Studies 68, 633-663.

Ross, S.A., Westerfield, RW., Jaffe, ]., 2005. Corporate Finance. McGraw-Hill, New
York.

Samorodnitsky, G., Taqqu, M., 1994. Stable Non-Gaussian Random Processes.
Chapman and Hall, New York.

Straetmans, S., Candelon, B., 2012. Fats Tails in Small Samples. Working Paper,
Maastricht University.

Straetmans, S., Verschoor, W., Wolff, C., 2008. Extreme US stock market fluctuations
in the wake of 9/11. Journal of Applied Econometrics 23, 17-42.

Werner, T., Upper, C., 2002. Time Variation in the Tail Behaviour of Bund Futures
Returns. Working Paper, European Central Bank.



	Long-term asset tail risks in developed and emerging markets
	1 Introduction
	2 Testing structural change in tail behavior: theory
	3 Monte Carlo experiments
	3.1 Data generating processes
	3.2 Choice of optimal number of extremes
	3.3 Monte Carlo results

	4 Empirical results
	5 Conclusions
	Acknowledgements
	References


